ElasticsearchBM25Retriever
一个基于关键词的 Retriever,用于从 Elasticsearch Document Store 中检索与查询匹配的 Document。
| pipeline 中的最常见位置 | 1. 在 RAG 管道中的 PromptBuilder 之前 2. 语义搜索管道中的最后一个组件 3. 在提取式 QA 管道中的 ExtractiveReader 之前 |
| 必需的初始化变量 | "document_store": ElasticsearchDocumentStore 的一个实例 |
| 强制运行变量 | “query”: 一个字符串 |
| 输出变量 | "documents": 文档列表(与查询匹配) |
| API 参考 | Elasticsearch |
| GitHub 链接 | https://github.com/deepset-ai/haystack-core-integrations/tree/main/integrations/elasticsearch |
概述
ElasticsearchBM25Retriever 是一个基于关键词的 Retriever,用于从ElasticsearchDocumentStore 中检索与查询匹配的 Document。它根据 BM25 算法计算 Document 与查询之间的相似度,该算法计算两个字符串之间的加权词重叠。
由于ElasticsearchBM25Retriever 根据词重叠匹配字符串,通常用于查找人名或产品名、ID 或定义明确的错误消息的精确匹配。BM25 算法非常轻量级且简单。尽管如此,对于在域外数据上使用更复杂的基于嵌入的方法,它也很难被超越。
除了query,ElasticsearchBM25Retriever 还接受其他可选参数,包括top_k(要检索的文档的最大数量)和filters(用于缩小搜索范围)。
在初始化 Retriever 时,您还可以使用fuzziness 参数,调整不精确的模糊匹配是如何执行的。
如果您想要查询和文档之间的语义匹配,您可以使用ElasticsearchEmbeddingRetriever,它使用嵌入模型创建的向量来检索相关信息。
安装
安装 Elasticsearch,然后启动一个实例。Haystack 支持 Elasticsearch 8。
如果您已设置 Docker,我们建议拉取 Docker 镜像并运行它。
docker pull docker.elastic.co/elasticsearch/elasticsearch:8.11.1
docker run -p 9200:9200 -e "discovery.type=single-node" -e "ES_JAVA_OPTS=-Xms1024m -Xmx1024m" -e "xpack.security.enabled=false" elasticsearch:8.11.1
作为替代方案,您可以前往 Elasticsearch 集成 GitHub,并使用提供的文件启动一个运行 Elasticsearch 的 Docker 容器。docker-compose.yml:
docker compose up
启动 Elasticsearch 实例后,安装elasticsearch-haystack 集成。
pip install elasticsearch-haystack
用法
单独使用
from haystack import Document
from haystack_integrations.components.retrievers.elasticsearch import ElasticsearchBM25Retriever
from haystack_integrations.document_stores.elasticsearch import ElasticsearchDocumentStore
from elasticsearch import Elasticsearch
document_store = ElasticsearchDocumentStore(hosts= "https://:9200/")
documents = [Document(content="There are over 7,000 languages spoken around the world today."),
Document(content="Elephants have been observed to behave in a way that indicates a high level of self-awareness, such as recognizing themselves in mirrors."),
Document(content="In certain parts of the world, like the Maldives, Puerto Rico, and San Diego, you can witness the phenomenon of bioluminescent waves.")]
document_store.write_documents(documents=documents)
retriever = ElasticsearchBM25Retriever(document_store=document_store)
retriever.run(query="How many languages are spoken around the world today?")
在 RAG 管道中
将您的OPENAI_API_KEY 设置为环境变量,然后运行以下代码
from haystack_integrations.components.retrievers.elasticsearch import ElasticsearchBM25Retriever
from haystack_integrations.document_stores.elasticsearch import ElasticsearchDocumentStore
from elasticsearch import Elasticsearch
from haystack import Document
from haystack import Pipeline
from haystack.components.builders.answer_builder import AnswerBuilder
from haystack.components.builders.prompt_builder import PromptBuilder
from haystack.components.generators import OpenAIGenerator
from haystack.document_stores.types import DuplicatePolicy
import os
api_key = os.environ['OPENAI_API_KEY']
# Create a RAG query pipeline
prompt_template = """
Given these documents, answer the question.\nDocuments:
{% for doc in documents %}
{{ doc.content }}
{% endfor %}
\nQuestion: {{question}}
\nAnswer:
"""
document_store = ElasticsearchDocumentStore(hosts= "https://:9200/")
# Add Documents
documents = [Document(content="There are over 7,000 languages spoken around the world today."),
Document(content="Elephants have been observed to behave in a way that indicates a high level of self-awareness, such as recognizing themselves in mirrors."),
Document(content="In certain parts of the world, like the Maldives, Puerto Rico, and San Diego, you can witness the phenomenon of bioluminescent waves.")]
# DuplicatePolicy.SKIP param is optional, but useful to run the script multiple times without throwing errors
document_store.write_documents(documents=documents, policy=DuplicatePolicy.SKIP)
retriever = ElasticsearchBM25Retriever(document_store=document_store)
rag_pipeline = Pipeline()
rag_pipeline.add_component(name="retriever", instance=retriever)
rag_pipeline.add_component(instance=PromptBuilder(template=prompt_template), name="prompt_builder")
rag_pipeline.add_component(instance=OpenAIGenerator(api_key=api_key), name="llm")
rag_pipeline.add_component(instance=AnswerBuilder(), name="answer_builder")
rag_pipeline.connect("retriever", "prompt_builder.documents")
rag_pipeline.connect("prompt_builder", "llm")
rag_pipeline.connect("llm.replies", "answer_builder.replies")
rag_pipeline.connect("llm.meta", "answer_builder.meta")
rag_pipeline.connect("retriever", "answer_builder.documents")
question = "How many languages are spoken around the world today?"
result = rag_pipeline.run(
{
"retriever": {"query": question},
"prompt_builder": {"question": question},
"answer_builder": {"query": question},
}
)
print(result['answer_builder']['answers'][0].data)
以下是您可能获得的示例输出
"Over 7,000 languages are spoken around the world today"
更新于 11 个月前
